
# **Realisation and validation of**

# stand alone stratum 1 time server

Pierre Le Cam [1] Société Astronomique de France

School of Photometry 2022 Besançon

### **Realisation of the server: hardware part**



GPS extension board

GSP antenna

- The Uputronics GPS expansion board [2] is available from Kubii [3].
- A case to hold the Raspberry board and the GPS board [4].
- The power supply is a rechargeable battery pack so it can be used in the fields.
- A crossed RJ45 cable to connect the Raspberry Pi directly to the Windows-based acquisition computer
- A keyboard, a mouse and an HDMI screen.

### **Realisation of the server: software part**

#### The Raspberry Pi OS

Downloading and installing the OS on the SD card is done with Raspberry Pi Imager [5].

#### The ntp server

For installation of a stand alone time server see Appendix A.

#### **Stand Alone Mode**

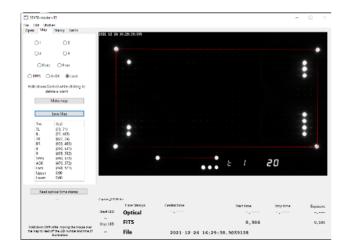
The NTP requires an internet connection to operate by fetching a time reference from a dedicated server on the internet. From this reference the local NTP corrects the variations of the Raspberry system clock.

The "Stand Alone" mode allows the server to operate without an internet connection. This mode is particularly useful for a mobile observation station.

The time server used for for this study was built in 2016 on a Raspberry Pi 2 base and the Raspian Jessie OS, following the instructions described at that time on the HAB site (now Uputronics).

# The SEXTA

### Hardware part


The SEXTA allows the verification of the time stamp of the images of a video. This is **the reference device** currently used for this purpose. SEXTA was described by Dave Gault and Tony Barry at ESOP 2019 in Paris [7].

### Software part

The recorded video images are read by the SEXTAreader software.

The first step is to obtain a calibration image that allows us to identify the position of the LEDs ("Map").

In the second step, decoding allows us to obtain the **time stamps of the beginning and end of** the exposure of the images. These timestamps can then be compared to the timestamp made by the video software.



| SEXIX reader v15                                                                               |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    | - |     |              |
|------------------------------------------------------------------------------------------------|--------------|-------------|---|---|------|----------|-----|-----|-----|-----|-----|-----|-----|-------|------------|----|---|---|-------|----|---|-----|--------------|
| ile Edit Volities                                                                              |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Open Map Stamp Batch                                                                           | 2021 12 24   | 12-36-30-12 |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                | 2021 32 24   | 10102-20-11 |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Amir Caspi's free                                                                              |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Apertare                                                                                       |              | • •         | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              | • •         | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Allow missed LED 0 v                                                                           |              | • • •       | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| O Use map threshold                                                                            |              |             | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Use magual threshold                                                                           |              |             | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Shift click pand LED                                                                           |              |             | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| _                                                                                              |              |             | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Set ON thresh to 0.5                                                                           |              |             | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Integer sec LED threshold                                                                      |              |             | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Set ON thresh to 0.5                                                                           |              |             | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Shift-click to tweek any LED pop                                                               |              |             | • |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| 5% integer second bleed ~                                                                      |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              |             |   | ۰ |      |          |     |     |     |     |     |     |     |       |            | -  | - |   |       |    |   |     |              |
|                                                                                                |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            | 3  | 8 | Ŀ | ŝ.    |    |   |     |              |
|                                                                                                |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| Read optical timestamp                                                                         |              |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                | Carse (0001) |             |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
|                                                                                                |              | Time Star   | - |   | Cert | ral time |     |     |     |     |     |     |     | et fi |            |    |   |   | top t |    |   |     | es.          |
|                                                                                                | Start LED    | Optica      |   |   |      | ,101     |     |     |     |     |     |     | 354 |       | n.<br>), ( | 61 |   |   | ),1   |    |   |     | (50)<br>(.10 |
|                                                                                                | 025          |             |   |   |      | ,        |     |     |     |     |     |     |     |       | ,,0        |    |   |   | · · · | -4 |   |     |              |
|                                                                                                | Sholl        | FITS        |   |   |      |          |     |     |     |     |     |     |     |       | 0,0        | 73 |   |   |       |    |   | - 0 | .10          |
| Hold down Shift while impying the mouse over<br>the men to read off the USD number and down of | 075          | File        |   |   |      |          |     |     |     |     |     |     |     |       |            |    |   |   |       |    |   |     |              |
| lighting to here on the same function                                                          | M/S          | FIIE        |   |   | - 2  | 021-     | 12- | -24 | 16: | :39 | :30 | .01 | 731 | 81    | 9          |    |   |   |       |    |   |     |              |

## Recording of the videos: equipment used

An Asus N750J laptop

i7 processor at 2.4 GHz, 16 GB RAM, SSD disk, Windows 10 Home. the computer passes the "TSC invariant" test with OccuCheckTime by H. Pavlov [8].

- One crossed RJ45 cable
- The time server described above.

The server is connected directly to the computer via the crossed RJ45 cable and regulates the computer's Windows system clock.

• A USB3 cable to connect the computer to the camera

Two cameras were tested:

- ZWO ASI 174MM
- QHY174M-GPS

## **Recording videos: software used**

#### Sharcap

version 4.0.8395.0 for all video recordings [9].

#### SEXTAreader

Version 1.7 for the exploitation of videos. This latest version fixes some problems encountered with the previous versions 1.5 and 1.6 [10].

#### NTP Meinberg

Meinberg provides a free "full NTP" under Windows as an easy-to-install executable package [11]. The reliability of this software has been tested by H. Pavlov and D. Gault [12].

#### NTP Server Monitor

The NTP Time Server Monitor software from Meinberg allows you to configure NTP in Windows and monitor its operation [13].

#### NTP Plotter

This software allows to obtain graphs of NTP operation over a whole day from the loopstats file [14].

#### Note:

More information about ntp can be found on David Taylor's website [15].

### **Measurement protocol**

- All the equipment is powered up 30 minutes to 1 hour before use allow the GPS to obtain its 3D FIX and the time server to regulate the Windows system clock.
- With the Meinberg NTP Monitor software check that the offset is less than 1 millisecond.
- Record of a first video in FITS format to make the " Map ".
- Then record a serie of four 600 frames videos in FITS format for each set of selected parameters.
- The videos are processed with SEXTAreader.

## **Results ZWO ASI 174MM camera**

#### Example 1

Capture area = 1936x1216, binning = 2, exposure = 100 ms, Turbo USB = 80, gain = 10; average of the values on the last line.

| DO(n)-SS(n) | 3σ    | SE(n)-SS(n) | 3σ    | SS(n+1)-SS(n) | 3σ    | SE(n+1)-SE(n) | 3σ    | DO(n+1)-DO(n) | 3σ    |
|-------------|-------|-------------|-------|---------------|-------|---------------|-------|---------------|-------|
| 22,003      | 1,853 | 99,947      | 0,967 | 100,097       | 1,727 | 100,097       | 1,727 | 100,096       | 0,510 |
| 22,017      | 1,842 | 99,933      | 1,078 | 100,097       | 1,620 | 100,097       | 1,582 | 100,095       | 0,635 |
| 22,047      | 1,836 | 99,957      | 0,873 | 100,097       | 1,617 | 100,097       | 1,617 | 100,095       | 0,544 |
| 22,037      | 1,808 | 99,947      | 0,967 | 100,097       | 1,543 | 100,097       | 1,619 | 100,096       | 0,598 |
| 22,026      | 1,835 | 99,946      | 0,971 | 100,097       | 1,627 | 100,097       | 1,636 | 100,095       | 0,572 |

DO: SharpCap DATE-OBS ...../ System Clock:Est. Frame Start (Fits file header)

- SS: SEXTA Start Time
- SE : SEXTA End Time
- SE(n)-SS(n) : corresponds to the duration of SEXTA exposure
- SS(n+1)-SS(n): regularity of SEXTA Start
- SE(n+1)-SE(n) : regularity of SEXTA End
- DO(n+1)-DO(n): regularity of the SharpCap timestamp

DO(n)-SS(n):time difference between the SharpCap frame start time stamp and the one measured by SEXTA.DO(n)-SS(n):Acquisition delay defined by D.Gault and H. Pavlov [12]

## **Results ZWO ASI 174MM camera**

#### Example 1

Capture area = 1936x1216, binning = 2, exposure = 100 ms, Turbo USB = 80, gain = 10; average of the values on the last line.

| DO(n)-SS(n) | 3σ    | SE(n)-SS(n) | 3σ    | SS(n+1)-SS(n) | 3σ    | SE(n+1)-SE(n) | 3σ    | DO(n+1)-DO(n) | 3σ    |
|-------------|-------|-------------|-------|---------------|-------|---------------|-------|---------------|-------|
| 22,003      | 1,853 | 99,947      | 0,967 | 100,097       | 1,727 | 100,097       | 1,727 | 100,096       | 0,510 |
| 22,017      | 1,842 | 99,933      | 1,078 | 100,097       | 1,620 | 100,097       | 1,582 | 100,095       | 0,635 |
| 22,047      | 1,836 | 99,957      | 0,873 | 100,097       | 1,617 | 100,097       | 1,617 | 100,095       | 0,544 |
| 22,037      | 1,808 | 99,947      | 0,967 | 100,097       | 1,543 | 100,097       | 1,619 | 100,096       | 0,598 |
| 22,026      | 1,835 | 99,946      | 0,971 | 100,097       | 1,627 | 100,097       | 1,636 | 100,095       | 0,572 |

### Conclusion :

The parameter set corresponds to the one used for occultations.

The acquisition delay can be considered as constant and equal to 22.0 ms.

The measurements are 99.7 % within the interval ± 1.9 ms.

## **Results ZWO ASI 174MM camera**

#### Example 2

Capture area = 968x608, binning = 1, exposure = 100 ms, Turbo USB = 80, gain = 10; average of values in ms on the last line.

| DO(n)-SS(n) | 3σ    | SE(n)-SS(n) | 3σ    | SS(n+1)-SS(n) | 3σ    | SE(n+1)-SE(n) | 3σ    | DO(n+1)-DO(n) | 3σ    |
|-------------|-------|-------------|-------|---------------|-------|---------------|-------|---------------|-------|
| 5,596       | 1,777 | 99,947      | 0,968 | 100,057       | 1,563 | 100,057       | 1,524 | 100,058       | 0,201 |
| 5,605       | 1,782 | 99,947      | 0,966 | 100,060       | 1,499 | 100,060       | 1,499 | 100,057       | 0,223 |
| 5,600       | 1,757 | 99,944      | 0,995 | 100,057       | 1,520 | 100,057       | 1,520 | 100,057       | 0,196 |
| 5,582       | 1,808 | 99,947      | 0,967 | 100,060       | 1,616 | 100,057       | 1,440 | 100,057       | 0,219 |
| 5,578       | 1,767 | 99,947      | 0,966 | 100,057       | 1,480 | 100,057       | 1,480 | 100,057       | 0,206 |
| 5,592       | 1,778 | 99,946      | 0,972 | 100,058       | 1,536 | 100,057       | 1,493 | 100,058       | 0,209 |

### Conclusion :

The parameter set corresponds to the one used for occultations.

The acquisition delay can be considered as constant and equal to 5.6 ms.

The measurements are 99.7 % within the interval ± 1.8 ms.

## Summary of results for ZWO ASI 174MM camera

### Influence on the acquisition delay

| Parameter        | Influence | ±3σ |
|------------------|-----------|-----|
| Exposure         | NO        | 2,0 |
| Gain             | NO        | 1,9 |
| Capture area     | YES       | 1,8 |
| Binning          | YES       | 1,9 |
| Turbo USB        | YES       | 2,0 |
| USB cable length | NO        | 1,9 |

### Conclusion :

For the same set of parameters, the acquisition delay can be considered as constant.

The results of the measurements are 99.7 % in the interval  $\pm 2$  ms.

## QHY174-GPS camera

### Checking the camera calibration

|           |      |       |           |      | Calibration<br>Start |      | Calibration<br>End |      |
|-----------|------|-------|-----------|------|----------------------|------|--------------------|------|
| KING      | Bin. | Expo. | USB Traf. | Gain | DO(n)-SS(n)          | 3σ   | DO2(n)-SE(n)       | 3σ   |
| 960x600   | 1x1  | 40    | 0         | 30   | 0,137                | 1,81 | -0,049             | 1,84 |
| 960x600   | 1x1  | 100   | 0         | 5    | 0,109                | 1,80 | -0,018             | 1,78 |
| 960x600   | 1x1  | 400   | 0         | 0    | 0,176                | 1,86 | -0,098             | 1,87 |
| 1920x1200 | 2x2  | 40    | 0         | 50   | 0,088                | 1,83 | 0,013              | 1,79 |
| 1920x1200 | 2x2  | 40    | 0         | 180  | 0,067                | 1,83 | 0,026              | 1,80 |
| 1920x1200 | 2x2  | 100   | 0         | 30   | 0,104                | 1,81 | -0,002             | 1,80 |
| 1920x1200 | 2x2  | 100   | 0         | 110  | 0,118                | 1,80 | -0,001             | 1,79 |
| 1920x1200 | 2x2  | 400   | 0         | 0    | 0,132                | 1,83 | -0,050             | 1,79 |
|           |      |       | average   |      | 0,116                | 1,82 | -0,022             | 1,81 |

**DO** SharpCap DATE-OBS GPS: **Start Exposure DO2** SharpCap DATE-OB2 GPS: **End Exposure** 

To obtain an accurate time stamp the camera needs to be calibrated first (see Appendix B).

#### **Conclusion :**

#### The DO - SS and DO2 - SE differences are virtually zero at the ± 2 ms accuracy of SEXTA.

The time stamps for the start and end of the image by the camera clock are identical to those of the SEXTA. With the default calibration values proposed by SharpCap the camera is correctly calibrated.

## QHY174-GPS camera

### The question:

Can this camera be used to validate a time server instead of SEXTA?

| KI   | NG    | Bin | Expo | USB Traf. | Gain | DE(n)-DO2(n) | 3σ   |
|------|-------|-----|------|-----------|------|--------------|------|
| 1920 | x1200 | 2x2 | 40   | 0         | 50   | 22,680       | 2,04 |
| 1920 | x1200 | 2x2 | 40   | 0         | 180  | 22,288       | 1,92 |
| 1920 | x1200 | 2x2 | 100  | 0         | 30   | 22,507       | 1,85 |
| 1920 | x1200 | 2x2 | 100  | 0         | 110  | 22,433       | 1,79 |
| 1920 | x1200 | 2x2 | 400  | 0         | 0    | 22,380       | 1,87 |
|      |       |     |      | average   |      | 22,458       | 1,89 |

DESharpCap DATE-ENDSystem Clock: Frame ReceivedDO2SharpCap DATE-OB2GPS: End Exposure

### **Conclusion :**

**DE - DO2 = Delay of acquisition of the QHY174-GPS camera.** 

For a given set of parameters this delay can be considered as **constant**.

The values obtained are 99.7% in the ± 1.9 ms range.

The camera can be used to validate a time server with an accuracy equivalent to SEXTA.

## Conclusions

The results that we obtained show that for the same set of recording parameters in SharpCap :


- the acquisition delay is constant
- the values are 99.7% within ± 2 ms.

# This last result shows that a time server built on a Raspberry Pi base in standalone mode can be used for accurate time stamping of astronomical images, in particular occultations.

This server is not connected to the Internet and does not suffer from the hazards of the Internet (e.g. delays with the remote server).

The measurements were performed at random times over a period of more than three months. They therefore show a statistical validity of the reliability of the server.

| <u>//</u> 1 | NTP Time Server Monitor by Meinb  | erg 1.04                |            |                     |            |                |              | -           |                 | ×   |
|-------------|-----------------------------------|-------------------------|------------|---------------------|------------|----------------|--------------|-------------|-----------------|-----|
| File        | Edit Help                         |                         |            |                     |            |                |              |             |                 |     |
| NT          | P Service NTP Status NTP Config   | guration File Statistic | Advan      | ced Statistic Conf  | iguration  | Notification   | 1            |             |                 |     |
| Lo          | calhost                           |                         |            |                     |            |                |              |             |                 |     |
| Cu          | urrent local NTP Status: Sync to: | : 192.168.1.254 Offset  | : -0.054m  | is Stratum: 2       |            |                | <u>Ω</u> 🛛   | Refresh Int | tervall: 1      | 0 s |
| N           | TP Status:                        |                         |            |                     |            |                |              |             |                 | _   |
|             | Remote                            | Refid                   | Stratum    | Туре                | When       | Poll Read      | h Delay      | Offset      | Jitter          |     |
|             | 192.168.1.254                     | PPS                     | 1          | Unicast server      | 11         | 16 377         | 0.534        | -0.054      | 0.134           |     |
|             |                                   |                         |            |                     |            |                |              |             |                 |     |
| Po          | ling Status                       | Running NTP V           | ersion: nt | pd 4.2.8p10@1.3728- | o Mar 23 1 | 3:43:48 (UTC+0 | 1:00) 2017 ( | 1) 🔴 DNS Io | okup <u>Leg</u> | end |



### Thanks to

Thierry Midavaine and the Eclipse Club for the loan of the SEXTA and for its help.

### Appendix A

#### **Stand Alone Time Server**

Since the realisation of the server, Anthony Stirk has removed the instructions for the "Stand Alone" functionality [6].

"I've also removed the off grid/standalone instructions as NTP isn't designed to work off grid using just the NMEA derived time and PPS to discipline it." Updated: 25/05/16 Fixed for Pi3/May Raspbian. Removed Standalone mode (NTP isn't designed for this)

Even if the "NTP isn't designed for this", from experience this mode works perfectly.

The described NTP server works connected to the Internet but not stand alone.

More recent versions of NTP can be used. For example Chrony or NTPsec.

Chrony seems to be a better choice than NTP for synchronization.

Jean-Baptiste Marquette has made a time server version with Chrony that works perfectly [16].

By searching on the web with keywords such as "raspberry pi chrony time server" it is possible to easily find various standalone realisations.

### Appendix B

#### Calibration of the QHY174-GPS camera

The protocol is described by QHY: <u>https://note.youdao.com/ynoteshare1/index.html?id=6e818b2c91ac61f1650fa9319f981074&type=note</u>

This calibration is done in SharpCap with two parameters:

- Calibration End Pos Adjust
- Calibration Start Pos Adjust

The values of these calibration parameters depend on different factors (exposure time, USB Traffic, 8/16 bits, ROI).

Robin Glover the author of SharpCap has done some modeling of these factors.

Any change in the recording parameters automatically corrects the Calibration End Pos and Calibration Start Pos values.

The purpose of the measurements was therefore to verify the accuracy of this modeling.

### Bibliography

[1] Contact : plc (at) nocturno.fr Website : http://www.nocturno.fr/

[2] Uputronics GPS card: https://store.uputronics.com/index.php?route=product/product&path=64&product\_id=123

[3] GPS map at Kubii :

https://www.kubii.fr/hat-cartes-d-extensions/3351-carte-d-extension-gps-rtc-pour-raspberry-pi-3272496306745.html?search\_query=GPS&results=11

[4] Uputronics offers a compatible box: https://store.uputronics.com/index.php?route=product/product&product\_id=90

[5] Pi Imager: https://raspberry-pi.fr/creer-carte-sd-windows-mac-linux-raspberry-pi-imager/

[6] 5 minute guide to making a GPS Locked Stratum 1 NTP Server with a Raspberry Pi: https://ava.upuaut.net/?p=951

[7] The SEXTA: https://lesia.obspm.fr/lucky-star/esop38/doc/L6-D.Gault-T.Barry.pdf

[8] OccuTimeCheck: http://www.hristopavlov.net/OccuTimeCheck.zip

[9] SharpCap: https://www.sharpcap.co.uk/sharpcap/downloads

[10] SEXTAreader: https://www.tonybarry.net/TB\_-\_Homepage/SEXTA.html

[11] NTP Meinberg: https://www.meinbergglobal.com/english/sw/ntp.htm

Executable ntp-4.2.8p15-v2-win32-setup.exe (4.29 MB) at time of writing.

[12] Pavlov, H., Gault, D. Using the Windows Clock with Network Time Protocol (NTP) for Occultation Timing. Journal for Occultation Astronomy, Volume 10 - No. 2- 2020-2.

[13] Meinberg NTP Server Monitor: https://www.meinbergglobal.com/english/sw/ntp-server-monitor.htm

[14] NTPlotter: https://www.satsignal.eu/software/net.htm

[15] David Taylor's website: http://www.satsignal.eu/ntp/Raspberry-Pi-NTP.html

[16] https://journees.sf2a.eu/wp-content/uploads/besancon\_2022/e-posters/s05/Archive.zip

In the archive file: S05\_11\_poster\_NTPstrate1\_MarquetteLeCam.pdf